Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants.
نویسندگان
چکیده
Most models for dioecy in flowering plants assume that dioecy arises directly from hermaphroditism through a series of independent feminizing and masculinizing mutations that become chromosomally linked. However, dioecy appears to evolve most frequently through monoecious grades. The major genetic models do not explain the evolution of unisexual flowers in monoecious and submonoecious populations, nor do they account for environmentally induced sexual plasticity. In this review, we explore the roles of environmental stress and hormones on sex determination, and propose a model that can explain the evolution of dioecy through monoecy, and the mechanisms of environmental sex determination. Environmental stresses elicit hormones that allow plants to mediate the negative effects of the stresses. Many of these same hormones are involved in the regulation of floral developmental genes. Recent studies have elucidated the mechanisms whereby these hormones interact and can act as switchpoints in regulatory pathways. Consequently, differential concentrations of plant hormones can regulate whole developmental pathways, providing a mechanism for differential development within isogenic individuals such as seen in monoecious plants. Sex-determining genes in such systems will evolve to generate clusters of coexpressed suites. Coexpression rather than coinheritance of gender-specific genes will define the sexual developmental fate. Therefore, selection for gender type will drive evolution of the regulatory sequences of such genes rather than their synteny. Subsequent mutations to hyper- or hyposensitive alleles within the hormone response pathway can result in segregating dioecious populations. Simultaneously, such developmental systems will remain sensitive to external stimuli that modify hormone responses.
منابع مشابه
The evolution of dioecy, heterodichogamy, and labile sex expression in Acer.
The northern hemisphere tree genus Acer comprises 124 species, most of them monoecious, but 13 dioecious. The monoecious species flower dichogamously, duodichogamously (male, female, male), or in some species heterodichogamously (two morphs that each produce male and female flowers but at reciprocal times). Dioecious species cannot engage in these temporal strategies. Using a phylogeny for 66 s...
متن کاملSex determination and the evolution of dioecy from monoecy in Sagittaria latifolia (Alismataceae).
The role of mutations of small versus large effect in adaptive evolution is of considerable interest to evolutionary biologists. The major evolutionary pathways for the origin of dioecy in plants (the gynodioecy and monoecy-paradioecy pathways) are often distinguished by the number of mutations involved and the magnitude of their effects. Here, we investigate the genetic and environmental deter...
متن کاملA cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges.
Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is...
متن کاملDioecy and its correlates in the flowering plants
Considerable ffort has been spent documenting correlations between dioecy and various ecological and morphological traits for the purpose of testing hypotheses about conditions that favor dioecy. The data analyzed in these studies, with few exceptions, come from local floras, within which it was possible to contrast he subsets of dioecious and nondioecious taxa with regard to the traits in ques...
متن کاملPhylogenetic Analysis of Dioecy in Monocotyledons.
Surveys of plant breeding systems in angiosperm families have shown a significant association between monoecy and dioecy, and researchers have proposed that dioecy has tended to evolve from monoecy. We evaluated this hypothesis in the context of a phylogeny of 918 monocotyledons assembled from 19 published trees. Binary and multistate breeding system characters were mapped onto a set of composi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 100 6 شماره
صفحات -
تاریخ انتشار 2013